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ABSTRACT 

Let  B be an a rb i t ra ry  no rma l  matr ix ,  sat isfying some condi t ions .  A b s o l u t e  

B - s u m m a b i l i t y  fac tors  in a s equence  for Ces~ro m e t h o d  C ~ if a > 1 or  a = 0 

and abso lu te  convergence  factors  in a sequence  for C ~ if 0 < a  < 1 are 

obta ined .  

Let X and Y be two Banach spaces and e, be continuous linear operators 

from X to Y. Let A = (a.k) be a triangular infinite matrix of complex numbers. 

For a sequence (U.)  where* U. E X we denote 

(1) 

and 

(2) 

U', = ~ a.kUk 
k = 0  

k=0  

where d,k =7~a.k =a.k-a.-1.k and a-Lk =0 .  The sequence (U.)  is called 

A-summable,  if the limit lim U'. exists in X. The sequence (U.)  is called 

absolutely A-summable or I A I-summable if the series Y 1[ u'.][ is convergent. If 

A = C a is the matrix of Ceshro method C a of the order a _>-0, then 

a ,k=A:~/A: ,  A ' j=(n+a) . . . ( l+a) /n ! ,  A S = l .  

Let also B = (b,k) be a triangular infinite matrix of complex numbers. The 

operators e. : X ~ Y are called summability factors in a sequence of the type 

(A,B) if for any A-summable sequence (U.)  the sequence (e.U.) is B-  

summable. Summability factors in a sequence of the type (IA ] , ]B] )  are 

similarly defined. If B = E is the unit matrix E = (&k) then summability factors 

T E v e r y w h e r e  the free indices  t ake  on all va lues  0, 1, 2,- �9 �9 
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are called convergence factors. To characterize the summability factors of a 

given type is to find effective (in practice, easily verifiable) necessary and 

sufficient conditions in order that en should be summability factors of this type. 

In what follows, instead of saying that en are summability factors in a sequence 

of the types (A, B) or (] A 1, [ B 1), we often write e, E (9~, ~)  or e, E (19~ 1, I ~1) 
respectively, replacing the letters A and B by, respectively, Gothic letters 9A and 

The first paper concerned with characterizing the summability factors in a 

sequence was the work of Bosanquet [8], who characterized the summability 

factors in a sequence of the type (C a, C ~) when a,/3 = 0, 1,. �9 �9 and X = Y = C. 

An analogous problem for absolute summability was solved by Tyler [15]. For 

the matrix of the Euler-Knopp method EA, i.e., 

a.k = ( k ) h k ( 1 - - h ) ~ - k '  

the convergence factors in a sequence of the types (E~, E)  and (1E~ [, I E I) were 

characterized by Espenberg [10] for X = Y = C, who obtained also in the 

particular case e~ = x" the summability factors in a sequence of types (E~, E . )  

and ([E~ [,[E~ I) for A,/x~ 0. 

If A = P is the matrix of the method P = (R,p,) of the weighted means of 

Riesz, i.e., if 

ank =pk/P,, Pn = p o + ' "  "+pn~0,  

where (p,) is an arbitrary sequence of complex numbers p. ~ 0, the problems of 

characterizing summability factors were solved in the paper of Kangro and 
Tynnov [13]. In their paper the summability factors in a sequence of the types 

(P,B) and ( [PI , IB[)  are characterized for arbitrary matrix B and arbitrary 

Banach spaces X and Y. To generalize the result of Kangro and Tynnov about 

e, E ( [ ~ [ , [ ~ [ )  the author [5] characterized the summability factors in a 

sequence of the type ([A ~ [,[B[) and hence of the type ([C ~ [,[B[), for 

a = 0, 1 , . . . ,  when A ~ is a normal matrix (i.e., a triangular matrix with an, ~ 0), 

where its inverse matrix (st, k) = (ank) -1 has a + 1 non-zero diagonals, i.e., st, k = 0 

at k < n -  a. Convergence factors in a sequence of the types (A~,E)  and 

([ A~[, [E[) were characterized by Abel' and Tiirnpu ([1], theorem 11). 

From the applications of the summability factors in a sequence it should be 

noted that Bosanquet ([6], lemma 6; and [7], lemma 7) and Kangro and Tynnov 

([13], w characterized summability factors in series. Petersen [14] exploited 

them for obtaining necessary and sufficient conditions for summability. Kangro 
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([12], theorem 2) and the author ([4], theorem 27.2) employed summability 

factors in the problem of weak Tauberian conditions. 

In the present paper we characterize summability factors in a sequence of the 
type (I C~ I, [B I), where a is a non-negative number, under certain conditions 

on the arbitrary triangular matrix B. In particular, we give a generalization of the 

result of Tyler for non-negative a and B = C ~ where/3 satisfies - 1 < Re/3 < 2. 

Also we can characterize the summability factors in a sequence of the types 

( [C~[ , [P I )  and ( [C~[ , [O l ) ,  where P = (R,p , )  and O is the matrix of the 

Woronoi-N6rlund method (WN, q. ), and if P and Q satisfy some conditions. 

Let B be a normal matrix. For the matrix B we denote 

b~ = s I/~.k I, b/ ,= s IA/~.k I, 
n = k  n = k  

where 

If we denote by v" the B-means in the series to series form of the sequence 
(e.U.), that is 

'-2Go  ovo 1)  n - -  

v = 0  

and applying the inverse transformation of (2), we obtain* 

v .  - y.ku~ 
k = 0  

(3) 

where 

y.k = s b..~.kev 
v = k  

and (~.k)=(a.k)  -1. Applying to the series to series transformation (3) the 

theorem of Kangro (see [11], theorem 4), which is the generalization for Banach 

spaces of the theorem of Knopp-Lorentz  ([4], theorem 4.1), we obtain: 

We have e, E (19/I, [23 [) if and only if for each k = 0, 1 , - . .  and each x ~ X 
the following condition holds: 

(4) s I1~'..~ II --- O(llx II). 
n = k  

* It is more precise to designate Y.k instead of 3'.k because (3) is a matrix transformation in the 
series to series form (cf. [4], p. 9). The same can be said concerning A.k, ~'.k, P.~, ~r.k etc. 
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Since for the convergence method  E we have ~k = 1 for 0--< k _-< n, then from 

(4) we obtain (cf. [4], theorem 26.4) directly 

In order that e~ ~ (I ~[,  I f~l) it is necessary and sufficient that* THEOREM 1. 

for every x ~ X 

(5) 

and 

(6) n=k ~=0 

Since I C~ I 9 I E [ at a > 0 and C o = E, then the conditions (5) and (6) are 

necessary also for s.  E ([ ~ I,[ ~ I ) when a > 0. 

It is known (see the formula (9.8) in [4]) that 

(7) = 
s = k  

where (~:~) is the inverse of the matrix of the t ransformation (1). For  the Ces~ro 

mean 

kA n - k  ~n~ = A ~ - o - 1  

and hence from (7), we obtain for 0_-< k _-< n 

k - I  

- E (8) ~:nk = 1 - ATA;~_; '. 
S ~ 0  

Now it is possible to prove 

THEOREM 2. I f  a _--> 1 and B satisfies the condition 

(9) bk = O (b~k) 

then necessary and sufficient conditions for e~ E (I ~ I, I ~ l) are (5), (6) and 

(10) [[ek [1 = O(k-'~/b~k). 

PROOF. The necessity of condit ion (10) follows directly f rom (4) if we 

consider the term n = k since 

t The condition (5) designates that the sequence (e,x) is absolutely B-summable, that is, taking 
into account a result of Bosanquet-Kestelman (cf. [9], p. 97), that for each x E X 
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yk~ = bkk•kek = ( bkk / akk )e~ . 

In order to prove the sufficiency part of the theorem we must prove that 
condition (4) is satisfied. Taking into account (8), we have 

y.k = s /~.~e~ - h.k, (11) 

where 

A,k = / ~ , , . . ~ ,  A ~'A :~Z' e.. 
v ~ k  s=O 

Applying consecutively conditions (10) and (9), we discover 

n~k 

s k-I 
= I&~lo(llxll,, "/b~v)~A~[A2"-,'[ 

n ~ k  v = k  s=0 

= ~ A: 2 IA;"-i'JO(llxJlt'-"lb~)b~ 
s=0 t,=k 

~-' ~, 
= O(llx I lk-") ~ A~' 

s=0 v = k - s  
IA : - - ' l =O( l l x l l )  

because a _-> 1. Now in view of the above and the partition (11), condition (4) 

follows from (9), (10), (5) and (6) by appealing to the proof of Theorem 1. 

Condition (9) of Theorem 2 is satisfied by many methods/3,  for example, by 

the methods (R ,p . ) ,  that preserve absolute convergence, the method (WN, q, ) 

with 0 < q. ~,, the method of Bernstein-Rogonsinki and others (cf. [2], w 

Applying Theorem 2 to the method P = (R,p . ) ,  we obtain 

COROLLARY 1. Let a > 1. I f  the method P preserves absolute convergence, then 

necessary and  sufficient conditions for e, E (I ~"  I, I ~ l ) are ( e,x ) E I P I' for every 
x E X and 

(12) 

Indeed if B = P we have 

I1~ II = O ( P ~ k - " / p k ) .  

g.~ = - p ~ p . / ( R P . - , )  

(see formulas (17.3) and (8.9) in [4]) and condition (6) of Theorem 2 follows from 

(12), since 

k-! I 2 P- 

= o(llx Jl). 

~ - '  rP~[  
v~0 
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because P preserves absolute convergence (see [4], theorem 17.2). 

Applying Theorem 2 to the method H of harmonic means (WN, (n + 1) -~) we 

obtain 

COROLLARY 2. If a >---- 1, then necessary and sufficient conditions for e, 
( l~  ~ 1,[~[) are (e ,x )ElHl '  for every x E X  and 

(13) I[ek II = O( k-~ in k). 

Indeed if B = H we have 5,. = 7X(q,_./O.), where q, = (n + 1) -1 and O, = 

1 + 1/2 + . . -  + (n + 1) -1 = ln(n + 2) + O(1). Therefore 

k - - I  

bnv~v  I 2 ~ n k ,  
i J=0 

where ~'~k= A(1/Q,). k-1 and ~'~k k-l E~=0 q,-~e~ = (1/O,_l)E~.oTXq,_~e~. 
From condition (13) we obtain [let II = O(qkO ) and hence 

Ilc  ]l-- o ( o ~ )  [A(1/Q,)Iq,-k = O(1) ~ q~q~-k = O(1) 
n=k n ~ k  n=k 

and, denoting K = [k/2], we obtain also 

2 IIc: ll = o(1)  ~ (v + 1)-1Q~ ~ q,-~q,-l-~/O,_t 
n ~ k  u = 0  n = k  

- -  �9 

v ~ O  v - K  

= O(qkOk)= O(1). 

However the method of Ceshro C ~ satisfies condition (9) only when - 1 </3 _<- 

1 and for complex/3 at - 1 < Re/3 < 1 (see [4], p. 188). To cover this case we 

prove another theorem, in which condition (9) is replaced by a weaker condition 

(14) b~, = O(bkk). 

The method (WN, q,) with q. > 0  satisfies condition (14) if Aq, is non- 

decreasing and bounded (see [5], p. 39). Condition (14) is also satisfied by any 

method GC ~, where G is an arbitrary normal method of summability for which 

(14) is fulfilled. 

THEOREM 3. Let t~ => 2. If B satisfies condition (14) and uniformly for all k < l 

(15) l -~ = 0 (k -~ /bkk ), 
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then for e. E ([~" I,[i~[), sufficient and (if bk = O(bk+l) and 

k 

(16) ~ (r + 1)-'/b. = O(1/b~) 
K=O 

also) necessary conditions are: (5), (6), (10) and for every x E X also 

(17) bk ~ A:A"~x = O ( l l x l l )  
K = 0  

and 

(18) 
k - 1  

=o(llxll, 

PROOF. Applying to the operator 3'.k partial summation and equation (8) we 
get 

(19) 
v = k  ~ = k  

where 

K = k  v ~ K  Pc=k 

k - 1  ~ k - 1  

v = k  s - O  K = s  s=O 

k - 1  k - 1  k - 1  

or,,k = Ab.v " Z A'2 X A -'-1,,-, e. = /~k Z e., 
v = k  s=O K=s  K =0  

r.k = 2 A /~ .  ~j A:  2 A : a - - s l E K .  
v = k  s ~ O  K = v + l  

From conditions (14), (10) and (15) follows 

n = k  s = 0  v = k  K = v + l  

2 2 = Y~ A: b'~O(~-~ 
s=O v = k  t c = v - s  

=0(1) ~ (s +1)" 2 v-"(v-s)-" 
s=O v = k  

= O(k -~) ~ (s + l ) " ( k - s )  '-" = 0(1) 
s=O 
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if a >2 .  In case that a =2 ,  then A2~-1 = 0  for K >2 ,  and thus 

~, I[~.~ll<=ALlb'~la~3lllek+,[r=o(1) 
r l=k  

because from (15) follows the condition bEE = O(bk§ and therefore from (10) 

we get Ile +,ll-- O(k The evaluation of the addend ~'~k in the partition 
(19) we obtain from the necessary conditions (5) and (6). Furthermore it is 

proved (see [5], p. 41) that for e. E (I ~ 1, [ ~ 1) under the restriction b~ = O (b~§ 

it is necessary that bk l[ = O(k -~ if a is an integer. Using this condition 

and applying partial summation and (16), we deduce 

 ,llP. ll=b l aT-'A~ [ 
r l=k  $ = 0  

k 

= O(b ) (s + 1)-'/b, + 0 ( 1 )  = 0 (1 ) .  
s=O 

Comparing the expression or.k with condition (18), and using the evaluations 

obtained for the operators trek, p.k and 7.k, we get the necessity of condition (18) 

for e. E ( I ~ M I , I ~ I ) ,  and from here also for e~ E ( l f ~ l , l ~ l ) ,  in view of the 

inclusion I cx~ c l c  ~ I. Now, in view of the necessity of conditions (5), (6), (10) 

and (18), from the partition (19) and condition (4), follows the necessity of (17) if 

we compare this condition with the expression P~k. Conversely from conditions 

(5), (6), (10), (17) and (18) taking into account the restrictions (14) and (15) and 

the partition (19) follows condition (4). This completes the proof of Theorem 3. 

Let us adapt Theorems 1-3 to the case B = C a. For C ~, condition (14) of 

Theorem 3, and hence condition (15) also, holds for all /3 with - 1 </3 --- 2 or 

- 1 < Re/3 < 2 (see [5], pp. 41-42). For the method C a we have C1 uk <= bE <= 
C~uk (see [3], p. 171), where C~ and (?2 are positive constants and 

{ (k +1)  -R~ for - 1 < / 3 = < 1  or - 1  < R e / 3  < 1 ,  

uk = ( k + l ) ~ l n ( k + 2 )  for /3~1 with R e / 3 = l ,  

(k + 1) -~ for /3 => 1 or Re/3 > 1. 

From here condition (16) is fulfilled if Re 13 > 0 (see for example [16], p. 192). 

Furthermore it is proved (see [5], p. 43), that in the case B = C ~, the condition 

(6) follows from (18), and (18) is necessary. Consequently from Theorems 1-3 

follows 

COROLLARY 3. I f  -- 1 </3 <= 2 or -- 1 < Re/3 < 2, then necessary and su]fi- 

cient conditions for e~ E (I @1, I ~ l) are 

(20) (e.x ) e I CO I' 
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and 

for every x E X. I f  a >= 1 and  - 1 </3 <= 1 or - 1 < Re/3 < 1, then necessary and  

sufficient conditions for e. E ([ (S" I, ] ~  I) are (20), (21) and 

(22) lick I I- O ( k ~ - ~ )  �9 

I f  a _~ 2 and 1 < [3 < 2 or 1 =< Re/3 < 2, then the necessary and  sufficient 

conditions for e. E ([~a I,[(S~ I) are .(22) and /or every x C X,  also (20), (21) and 

~k k- ,  A : A ~ e K x  = ,~, o(11=11). 

For the case 0 <  a < 1 we will be considering only absolute convergence 

factors. 

THEOREM 4. 

(1~ ~ 1,1~1) are 

(23) 

and  for every x E X also 

I f  0 < a < 1 then necessary and sufficient conditions for e, E 

I1~ II = O(k ~) 

(24) ~ 112~.x II = o(l lx II) 
n ~ O  

and 

(25) (n + 1 - k )  -~ II~,e,x II = O (  k-~ II x II). 
n = k  

PROOF. Since B = E conditions (5) and (10) become (24) and (23) respec- 

tively, but (6) reduces to Ilek-,x [I = O(llx II) and follows from (23). Taking into 
account the proof of Theorem 2 we must consider the operator 

h.k A~A-~_.2e._l + . . . .  l = A ~ A . _ ~  7~e..  
s = 0  s = 0  

Applying partial summation, we obtain 

A.~ =~ '~  -~"~ +~/~ - ~/'~, 

where 
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k - I  

~.'k = ~ ,  A : - ' A ; ~ - . . ' e . - , .  
K~O 

~nttk = ct - a - I  

k - I  

~'k = ~ A : - ' A ~ - . A e . ,  
K~O 

ff."k = A ~  i A .  kAe.. 

Further ,  for n > O, 

A ,  A . _ .  e.-~ = , - i  r = ~-i - . - i  A . - ~ A - "  K - I E n - l .  

By the formulas  of Bosanque t  (see [4], formula  (15.20), or  [7], pp. 487-488) and 

Chow (see formula  (15.19) in [4]) f rom condit ion (23) follows 

IIr = o(1)  1/~. , I IA:  'A~tk = 0(1)  z~ A~-dA~ = O(k-") = 0(1).  
n = k  n = k  n ~ k  

Condi t ion (23) implies 

II,p.'u II = o(k~)  ~, O(n-~)lA.~-; ' l  = 0(1 )  ~ IA;,~_;'I = 0(1).  
n = k  n - k  n = k  

From condit ion (24) we deduce for every x E X 

II ;kxll  II  .xlJ A~-'A:~-. = s I]Ae.xlt=o(llxl]). 
n = k  n - k  ir  n - k  

The evaluat ion of the opera to r  ~,"k reduces to condit ion (25). 
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