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ON A GENERALIZATION OF
A THEOREM OF B. TYLER

BY
S. BARON

ABSTRACT

Let B be an arbitrary normal matrix, satisfying some conditions. Absolute
B-summability factors in a sequence for Cesaro method C* if e Z1ora =0
and absolute convergence factors in a sequence for C* if 0<a <1 are
obtained.

Let X and Y be two Banach spaces and &, be continuous linear operators
from X to Y. Let A = (a..) be a triangular infinite matrix of complex numbers.
For a sequence (U,) where' U, € X we denote

ey UL= 2 a.U
k=0

and

(2) ur’t=kzodnkuk,

where @, = Adu = A —a,.x and a_;, =0. The sequence (U,) is called
A-summable, if the limit lim U, exists in X. The sequence (U,) is called
absolutely A-summable or | A |-summable if the series 2| u,| is convergent. If
A = C° is the matrix of Cesaro method C* of the order a =0, then

aw = ATLIAL, At=(n+a)--(1+a)nl, As=1.

Let also B =(b,) be a triangular infinite matrix of complex numbers. The
operators ¢, : X — Y are called summability factors in a sequence of the type
(A,B) if for any A-summable sequence (U,) the sequence (&,U,) is B-
summable. Summability factors in a sequence of the type (|A|,|B|) are
similarly defined. If B = E is the unit matrix E = (8. ) then summability factors

' Everywhere the free indices take on all values 0,1,2,---.
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are called convergence factors. To characterize the summability factors of a
given type is to find effective (in practice, easily verifiable) necessary and
sufficient conditions in order that &, should be summability factors of this type.
In what follows, instead of saying that &, are summability factors in a sequence
of the types (A, B) or (|A|,| B|), we often write &, €(%,%B) or &, €(|YA],|B])
respectively, replacing the letters A and B by, respectively, Gothic letters % and
B.

The first paper concerned with characterizing the summability factors in a
sequence was the work of Bosanquet [8], who characterized the summability
factors in a sequence of the type (C%, C*) when a,8 =0,1,---and X =Y =C.
An analogous problem for absolute summability was solved by Tyler [15]. For
the matrix of the Euler-Knopp method E,, i.e.,

e = (,’:) AKA=Ay,

the convergence factors in a sequence of the types (E,, E) and (|E, |,| E|) were
characterized by Espenberg [10] for X = Y = C, who obtained also in the
particular case €, =x" the summability factors in a sequence of types (E,, E,.)
and (|E.|,|E,]) for A, u#0.

If A =P is the matrix of the method P = (R, p.) of the weighted means of
Riesz, i.e., if

ank=Pk/Pn, Pn=Po+"'+p..7£0,

where (p,) is an arbitrary sequence of complex numbers p, # 0, the problems of
characterizing summability factors were solved in the paper of Kangro and
Tynnov [13]. In their paper the summability factors in a sequence of the types
(P,B) and (|P|,|B]|) are characterized for arbitrary matrix B and arbitrary
Banach spaces X and Y. To generalize the result of Kangro and Tynnov about
en €(|B[,|B|) the author [5] characterized the summability factors in a
sequence of the type (|A*|,|B|) and hence of the type (|C*|,|B|), for
a =0,1,---, when A* is a normal matrix (i.e., a triangular matrix with a,, # 0),
where its inverse matrix (&) = (a. )" has a + 1 non-zero diagonals, i.e., &« =0
at k <n —a. Convergence factors in a sequence of the types (A E) and
(|A*|,|E|) were characterized by Abel’ and Tiirnpu ([1], theorem 11).
From the applications of the summability factors in a sequence it should be
noted that Bosanquet ([6], lemma 6; and [7], lemma 7) and Kangro and Tynnov
([13], §3) characterized summability factors in series. Petersen [14] exploited
them for obtaining necessary and sufficient conditions for summability. Kangro
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({12], theorem 2) and the author ([4], theorem 27.2) employed summability
factors in the problem of weak Tauberian conditions.

In the present paper we characterize summability factors in a sequence of the
type (|C=|,|B]|), where a is a non-negative number, under certain conditions
on the arbitrary triangular matrix B. In particular, we give a generalization of the
result of Tyler for non-negative @ and B = C? where 3 satisfies —1 <Re 8 <2.
Also we can characterize the summability factors in a sequence of the types
(IC*|,|P]|) and (|C*|,|Q]), where P =(R,p,) and Q is the matrix of the
Woronoi-Noérlund method (WN, q.), and if P and Q satisfy some conditions.

Let B be a normal matrix. For the matrix B we denote

bk:;kll;nkl’ bL:gkIAb_nk',

where Aby = bu — by
If we denote by v, the B-means in the series to series form of the sequence
(e.U,), that is

v:. = 2 b_nUEUUU
v=0
and applying the inverse transformation of (2), we obtain’

3) VL= Yl
k=0

where

‘Ynk = S bnv vkEv
v=k

and (&)= (a«)™". Applying to the series to series transformation (3) the
theorem of Kangro (see [11], theorem 4), which is the generalization for Banach
spaces of the theorem of Knopp-Lorentz ({4], theorem 4.1), we obtain:

We have ¢, €(|U|,|B]) if and only if for each k =0,1,- - and each x € X
the following condition holds:

@ > Imxli=0(lx .

* It is more precise to designate ¥,, instead of v,, because (3) is a matrix transformation in the
series to series form (cf. [4], p. 9). The same can be said concerning A, ., Pux, On €tC.
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Since for the convergence method E we have &, = 1 for 0= k < n, then from
(4) we obtain (cf. [4], theorem 26.4) directly

THEOREM 1. In order that ¢, € (|€|,|B|) it is necessary and sufficient that'
for every x €X

) (e-x)E|B]’
and
©) f}k kj; bex|= O(x]).

Since |C*| 3 |E| at @« >0 and C°= E, then the conditions (5) and (6) are
necessary also for &, € (|€*|,|®B|) when a 0.
It is known (see the formula (9.8) in [4]) that

(7) g_nk = Zk gns)
where (&) is the inverse of the matrix of the transformation (1). For the Cesaro
mean

gnk = A :A ;g;l,

and hence from (7), we obtain for 0=k =n

_ k=1
®) Ei=1-D AZA;%

=i
Now it is possible to prove
THEOREM 2. If @ 21 and B satisfies the condition
()] b = O(bu)
then necessary and sufficient conditions for &, € (|C*|,|%B]) are (5), (6) and
(10) lexll = O(k=/bu).

Proor. The necessity of condition (10) follows directly from (4) if we
consider the term n = k since

' The condition (5) designates that the sequence (¢,x) is absolutely B-summable, that is, taking
into account a result of Bosanquet-Kestelman (cf. [9], p. 97), that for each x € X

3 5.; b,.ex

n=mp ||y

= O(llx]).
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Yik = Ekkf_kkﬁk = (bkk [ )é'k-

In order to prove the sufficiency part of the theorem we must prove that
condition (4) is satisfied. Taking into account (8), we have

(11) ‘y"k = 2“ Envsv - /\nk,
where

=3 bm(z ATA ) €

vk

Applying consecutively conditions (10) and (9), we discover

2 [Awe | = E E | b

nek v=k

O(llxllv’“/bw)ZA At

= E Ag 21 A2 O x ||»=/b..)b,

x

= 0(lxllk™) 5, A3 3 A= O(lx])

v=k-—s

because @ =1. Now in view of the above and the partition (11), condition (4)

follows from (9), (10), (5) and (6) by appealing to the proof of Theorem 1.
Condition (9) of Theorem 2 is satisfied by many methods B, for example, by

the methods (R, p, ), that preserve absolute convergence, the method (WN, q.)

with 0=g, |, the method of Bernstein-Rogonsinki and others (cf. [2], §5).
Applying Theorem 2 to the method P = (R, p.), we obtain

COROLLARY 1. Leta > 1. If the method P preserves absolute convergence, then
necessary and sufficient conditions for €, € (|C*|,|B|) are (e.x)E|P|' for every
x € X and
(12) lex || = O(Pk == /ps).

Indeed if B =P we have
Env = = DPuPn /(PnPn—l)

(see formulas (17.3) and (8.9) in [4]) and condition (6) of Theorem 2 follows from
(12), since

kln

E P.P._,

n=k

2 p.ex

nlv

-oa:n 3,
- o(ix),

v=
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because P preserves absolute convergence (see [4], theorem 17.2).
Applying Theorem 2 to the method H of harmonic means (WN, (n +1)™') we
obtain

CoroLLARY 2. If @ =1, then necessary and sufficient conditions for €, €
(€= |,|9]) are (e.x)E|H]| for every x € X and

(13) lecll= Ok Ink).
Indeed if B = H we have b,, = A(q.-,/Q.), where g, =(n +1)" and Q, =
1+12+--+(n+1)" =In(n +2)+ O(1). Therefore
k=l
ZO bnvev = {r’ik+ gik;
where (1= A(1/Q.)- 2520 gae. and (= (1/Qn-1) 2525 DGk, .

From condition (13) we obtain || & | = O(q.Qx) and hence

2 ¢l = O(Q%) 2 |A(1/Q.)|gn—x = O(1) 2 Gngn—x = O(1)

and, denoting K = [k/2], we obtain also

S 1al=00 2 ¢ +17Q. 3, oo/ O

=0() 2; qgc-» = O(qx) (20 q. +§K qk-v)

= O(kok) = O(l)

However the method of Cesaro C? satisfies condition (9) only when —1 <8 =
1 and for complex 8 at —1<Re B <1 (see [4], p. 188). To cover this case we
prove another theorem, in which condition (9) is replaced by a weaker condition

(14) b= O(bu).

The method (WN,q.) with g. >0 satisfies condition (14) if Ag, is non-
decreasing and bounded (see [5], p. 39). Condition (14) is also satisfied by any
method GC', where G is an arbitrary normal method of summability for which
(14) is fulfilled.

THEOREM 3. Leta = 2. If B satisfies condition (14) and uniformly forallk <1

(15) [7*/by = O(k ™ /bu),
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then for ¢, € (|€=|,|B|), sufficient and (if bx = O(bi+1) and
k
(16) > (k +1)/b. = O(1/b)
k=0

also) necessary conditions are: (5), (6), (10) and for every x € X also

=1
17 b, ’EOAZA"E,(x =0(|x
and

k—1
(18) b, Zos,(x =0(|x|).

Proor. Applying to the operator vy, partial summation and equation (8) we
get

(19) ynk = Zk AI; 2 Kkgk Tk — pnk + Tnic + Tnk;

where

Tk = 2 2 nvsx S bnxska
_ k=l
pnk = 2 Abrw Z 2 gsgx bnk Z(] A:Auss,

s=0 k=5

- k=1

O = Zk Ab,, 2 ArS Aztie =6y S e,

K=s «=0

Tue = 2 Ab,, - E A Z AT,

xk=v+1

From conditions (14), (10) and (15) follows

Slml=g Az 3 bt 3 4 e
k=1 ® x
=2 A1 2 b0 /by) 2 A

=0() "2; (s +1) Zk pr (v —s)

= 0k™) 3 (s +1y (k —s)™ = O(1)
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if @ >2. In case that @ =2, then A;*"' =0 for k > 2, and thus

2 Il = AL b AP ol = O)

because from (15) follows the condition by = O(bi+1.4+1) and therefore from (10)
we get | & || = O(k */bu). The evaluation of the addend ., in the partition
(19) we obtain from the necessary conditions (5) and (6). Furthermore it is
proved (see [5], p. 41) that for ¢, € (€~ |,|B]) under the restriction b, = O (bi+,)
it is necessary that b, [|A* & || = O(k™) if « is an integer. Using this condition
and applying partial summation and (16), we deduce

2 llpuc ]l = b
n=k

= 0(b) 2 (s +1)"Y/b, + 0(1) = O(1).

k
2 AT e, — AfAT e,
s=0
k

Comparing the expression o.. with condition (18), and using the evaluations
obtained for the operators 7., p. and 7., we get the necessity of condition (18)
for &, €(J€![,|B]), and from here also for &, €(|€*|,|B]), in view of the
inclusion | C!*!| C | C*|. Now, in view of the necessity of conditions (5), (6), (10)
and (18), from the partition (19) and condition (4), follows the necessity of (17) if
we compare this condition with the expression p.. Conversely from conditions
(5), (6), (10), (17) and (18) taking into account the restrictions (14) and (15) and
the partition (19) follows condition (4). This completes the proof of Theorem 3.

Let us adapt Theorems 1-3 to the case B = C®. For C?, condition (14) of
Theorem 3, and hence condition (15) also, holds for all 8 with ~1 <8 =2 or
—1<ReB <2 (see [5], pp. 41-42). For the method C* we have Civ = b, =
Cyve (see [3], p. 171), where C; and C, are positive constants and

(k +1) " for —1<B=lor —-1<ReB<1,
Vi ={(k+1)"ln(k +2) for B#1 with ReB =1,
(k+1)" for Bzlor Reg>1.

From here condition (16) is fulfilled if Re 8 >0 (see for example [16], p. 192).
Furthermore it is proved (see [S], p. 43), that in the case B = C?, the condition
(6) follows from (18), and (18) is necessary. Consequently from Theorems 1-3
follows

CoROLLARY 3. If —1<B =2 or —1<Rep <2, then necessary and suffi-
cient conditions for e, € (|€|,|€?]) are

(20 (ex)E|C?|
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and

2n Vi

k -1
26X
Kk =0
foreveryx € X. Ifa 21 and —1<B =1o0r —1<Re <1, then necessary and
sufficient conditions for ¢, € (|€*|,|C?]) are (20), (21) and

= O(lxI

(22) lell = Ok*==).

If az2 and 1<B =2 or 1=RepB <2, then the necessary and sufficient
conditions for e, € (]C*|,|C# |) are (22) and for every x € X, also (20), (21) and

= O(l=)-

Vi

k—1
2 AiA%ex
k=0

For the case 0 <a <1 we will be considering only absolute convergence
factors.

THEOREM 4. If 0<a <1 then necessary and sufficient conditions for ¢, €
(€= [,|€]) are

(23) lewll= Otk <)

and for every x € X also

(4) > [Bewx = O(lx])
and
5) 3 (n+1-ky*|Bewx || = Ok x )

Proor. Since B = E conditions (5) and (10) become (24) and (23) respec-
tively, but (6) reduces to ||ec-.x || = O(||x||) and follows from (23). Taking into
account the proof of Theorem 2 we must consider the operator

= k-1 _
Ank = IS A:A;l‘—’s.zsn—l + 2 A_‘:A ,:‘:_‘_l AS,,.
s=0 s=0
Applying partial summation, we obtain

Ak = ¢n’k - (P:-/k + '//n,k - ‘l’r/-'k,

where
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k—1I
YA -1 - 1 —ax—
b= ATAS 6, ol = ALLA 6,

=0

k=1
Ui =D AST'A A, U= AL A Ae,.

x=0

Further, for n >0,

n n -k
= 1 A ~a-1 —_ 1A -a-
o= ATA e = D ASIA e, .
x=0

K=k

By the formulas of Bosanquet (see [4], formula (15.20), or [7], pp. 487-488) and
Chow (see formula (15.19) in [4]) from condition (23) follows

Sleal=00) 3 e AT Ais= 00) 3, ArniAl= Ok )= ()

Condition (23) implies

2 loil=0(k=) 2 O™ A.5!|=0() 2 Az = 0().
From condition (24) we deduce for every x € X

S Iixll= 3, 1Ben] 3 Ariaz = 3 JBex] = O(x)).

The evaluation of the operator ¢ reduces to condition (25).
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